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The purpose of this report is to document the results of experiments performed at the

University of Kansas and at the NASA Langley Research Center into the use of shaped cavities

to generate vortices in supersonic flow, as well as the progress made in simulating the observed

flow using the PAB3D flow solver. The investigation was performed on eighteen different cavity

configurations installed in a convergent-divergent nozzle at the Jet Exit Facility at NASA

Langley. Pressure sensitive paint, static pressure ports, focusing Schlieren and water tunnel flow

visualization techniques were used to study the nature of the flow created by these cavities. The

results of these investigations revealed that a shaped cavity can generate a pair of counter-rotating

streamwise vortices in supersonic flow by creating weak compression Mach waves and weak

shocks. The ability of pressure sensitive paint to measure high pressure flows was also

confirmed. The PAB3D computer program, developed at NASA Langley, was used to attempt

to reproduce the experimental results. Unfortunately, due to problems with matching the grid

blocks, no converged results were obtained. However, intermediate results as well as a complete

definition of the grid matching problem and suggested courses of action are presented.
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1.0 INTRODUCTION

The purpose of this report is to document the results of flow control studies in the supersonic

regime. A shaped cavity (ref. 1) was used to generate a pair of counter-rotating streamwise

vortices in supersonic flow.

Vortex generation traces it's roots back to the start of aircraft development. These subsonic

vortex generators were primarily of two types, vane-type and ramp-type vortex generators such

as those developed by Wheeler (ref. 2). In both cases, the devices were protrusions into the flow.

These protrusions caused turning of the flow over the device and streamwise vortices were

generated.

Due to the presence of waves in supersonic flow, i.e. compression Mach waves and expansion

Mach waves, and related shock formation, such protrusions would be "lossy." Therefore, cavities

turning flow with weak supersonic waves (expansion and compression) have been investigated.

Five different cavity configurations were studied at the University of Kansas and eighteen single

and multiple cavity configurations were investigated at NASA Langley. The PAB3D computer

code developed by engineers of the Propulsion Aerodynamics Branch of NASA Langley was used

to attempt to augment the experimental results.

There are many potential applications for a supersonic vortex generator:

Transonic drag reduction

Control of flow separation on propulsion system installations such as boattails

Base drag reduction

Flow attachment in divergent supersonic ramps in convergent-divergent nozzles and thrust

vectoring applications

Flow turning enhancement in turbomachinery blading in transonic and supersonic

throughflow compressors and turbines

Supersonic jet noise reduction through enhanced mixing in the free shear layer

Shock cell restructuring in underexpanded nozzles

Supersonic shock noise reduction

Mixing enhancement in backward-facing-step SCRAMjet combustors

- Flow control in supersonic inlets



3.0 THEORETICAL CONSIDERATIONS

The development of streamwise vortices in supersonic flow will be discussed as well as the

theoretical operation of the supersonic vortex generator developed at the University of Kansas.

3.1 Develonment of Sunersonic Vortices

The understanding of the generation of streamwise vortices in supersonic flow is derived from

the differential form of inviscid linear momentum, Euler's equation without body forces,

Dv =-Vp ( 1 )PD-_

Writing out the substantial derivative, Eqn (1) is

8v +p (_ V) vffi-VPp-_ (2)

Now, the combined first and second law of thermodynamics in three-dimensional space form is

needed,

Combining E,qns (2) and (3) results in:

rVs =w- "" (3)
P

_v
TVs =Vh+-_c + ( v. V) v

However, from the definition of total enthalpy,

(4)

Hence,

Substituting Eqn (5) into (4):

2



V 2
Vh =Vh o -V (-_ ) (5 )

v 2 +igv
TVs "Vho-V (-_- ) -_ + (v" V) v (6)

Using the vector identity

Eqn. (6) becomes

V 2

V( -y )- (v. V) v=vx (Vxv)

+£)v
TVs =Vh o -v× (V× v) (7)

Equation (7) is known as Crocco's theorem, because it was first obtained by L. Crocco in 1937

(ref. 3).

For steady, adiabatic flow, Crocco's theorem becomes

TVs =-vx (Vxv) (8)

Equation (8) is the basis for developing streamwise vortices in supersonic flow. If the

assumption is made that the waves involved in the creation of these vortices are weak waves, in

other words Mach waves, then the flow can be reasonably assumed to be isentropic. For this

condition, equation (8) becomes

vx (Vxv) =0 (9 )

Equation (9) has two solutions. The most common interpretation of this equation is that the flow

is irrotational or



Vxv=O

However, another solution is also physically valid. If the vorticity vector is parallel to the flow

direction, then

Vx[_I:o (I0)

Therefore, the solution for the vorticity vector becomes

Q=_.*V (II)

In other words, the resulting vorticity vector is aligned with the velocity vector. The result this

development is that through weak supersonic waves, streamwise flow rotation may be generated

in the limit of inviscid flow. However, the effects of viscosity cannot be neglected in the

development of these vortices.

3.2 Sunersonic Vortex Generator Oneration

To accomplish this task of generating vortices in supersonic flow isentropically, the idea of

using a wedge shaped cavity with a ramp was developed, see figure 2.1.1.

The supersonic freestream flow encounters the vertex of the shaped cavity. Since the edge

of the cavity is not perpendicular to the flow, the resulting expansion fan is "smeared" along the

lip of the cavity. As the flow encounters the ramp, the flow turns into itself, creating

compression waves. Since the expansion is smeared, so will be the compression. As a result,

the compression waves do not coalesce into a shock wave as quickly. The relative strength of

the shock wave that does coalesce will depend greatly on the depth of the cavity. Essentially,

there is a small region within the cavity where the compression waves are relatively weak. These

expansion and compression waves coalesce into a pair of counter-rotating, streamwise vortices.

As the vortices travel up the ramp, more and more flow is encountered, creating stronger vortical

structures. When the flow finally emerges from the ramp at the base of the cavity, the vortices

are fully developed and travelling parallel to the upstream flow. The vortices have a higher flow

4



energythanthe boundarylayeron theplate. As aresult,thevorticescanenergizetheboundary

layer, delaying separation. Also, since the vortices have a lower static pressurethan the

surroundingflow, shocksin anoverexpandednozzleshouldbedelayedlonger. Thepresenceof

thevorticesshouldallow thesupersonicflow to expandfartherdownthedivergentportion of the

duct, asa result, the shock-inducedseparationdownstreamof the cavity will bedelayed. This

would resultin a strongershock. However,therearecaseswheredelayingthe separationwould

be desireableevenwith the increasedlossesdue to the strongershock.

Theanglethat thecavity walls madewith thefreestreamflow wasconsideredimportant. It

wasbelieved,andlater confirmedexperimentally,thatstrongervorticeswould be formed if the

vertexhalf-anglewaslessthanthefreestreamMachangle. If thevertexhalf-anglewaslessthan

the Mach angle, then the normal componentof the flow to the lip would be subsonic.

Conversely,if the vertex half-anglewas greaterthan the Mach angle, then the lip would be

exposedto supersonicnormal flow and would essentiallyact like a backwardfacing stepin

supersonicflow, creatingvery weakvortices.

The shapedcavity investigatedherewasoriginally designedto actin anactivemanner. The

SSVG would be deployableas necessaryto aid in controlling flow separationin offdesign

conditionsor in thrustvectoringsituations.

3.3 Comnutational Fluid Dynamics

The experiments used to investigate the cavity vortex generator were primarily qualitative in

nature. As a result, a computational fluid dynamics analysis was attempted to obtain quantitative

data about the cavity vortex flow. It was believed that if the CFD code could adequately predict

the observed flow phenomena, that the code could later be used for design of an "optimum"

shape for the cavity in any desired flow field.

5



3.3.1 Grid Generation

The grid used to model the SSVG was generated using the AX'B program, developed by Dr.

S. Paul Pao at NASA Langley (ref. 4). This grid generator was designed for generating multi-

patch, multi-block grids for 2-D and simple 3-D objects and flow. Since the cavity under

investigation was a simple 3-D design, this code was originally considered ideal for grid

generation. AXB has the additional advantage of automatically generating a standard output file

used by the CFD flow solver used. Reference 4 gives a more detailed description of the AXB

grid generation package. Appendix C contains a sample set of input files used by the AXB code

to generate the grid for the nozzle design.

For the cavity flow investigation, four grid blocks were created. One upstream of the cavity,

one inside the cavity, one for flow over the cavity and one for downstream flow. Boundary

layer grid concentrations were made along the bottom surface, along the cavity walls and

downstream along the expected vortex paths. The final grid contained 670,516 grid points.

Figure 3.3.1 shows a sample grid, viewed from above, for the nozzle configuration investigated.

Figure 3.3.2 shows the same grid in 3-D. Grids for the nozzle shape as well as a flat plate grid

were generated. No orthogonality of the grid was assumed during the solution procedure.

3.3.2 12a.W._ .01y. 

The CFD code used for this investigation was the PAB3D code, version 12, developed at the

Propulsion Aerodynamics Branch at NASA Langley. This code is a multi-grid, multi-block code

that has the capability to simulate chemical as well as aerodynamic flow characteristics. PAB3D

has been extensively used by the engineers at NASA Langley to model and investigate a wide

variety of flow conditions and phenomena (ref. 5-7). The PAB3D code has the advantage of

allowing the user to custom design the solution method for a particular application.

A sample control file used with the PAB3D code is contained in Appendix D. The solution

method chosen for this particular investigation is outlined below.

A thin-layer Navier-Stokes, with j and k directions uncoupled, formula was solved using a

modified Roe solution scheme which used space marching. Ideal gas was assumed and no kinetic

6



energydissipationwasevaluated.A Roeflux splitting schemewasemployedwith a vanLeer

schemeusedfor thejacobeanflux splitting. A thirdorderspacialdiscretizationwith athird order

minmod limiter was also used. A Jones-Laundertwo equation turbulencemodel, where

C3=const=l.45,wasused. No kinetic energydissipationwasevaluated. A constanttime step

wasemployedwith a varyingCFL number. Chuech'scompressibilitycorrectionfactorwasused

for themixing length. Johnson-Kingandk-e modelswereusedfor theboundary layer turbulence

models with a fully 3-D vorticity calculation. A Reimann invariant, constant pressure, was used

for the far field boundary.

7
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Figure 3.3.1 Generated Grid for Investigation of Divergent Supersonic Flow with Cavity

Installed. Configuration 6 (0=30 °, _- 8 °)



Figure 3.3.2

10

Three Dimensional Grid for Investigation of Cavity Flow in a Divergent

Supersonic Nozzle. Configuration 6 (0=-30 °, 8= 8 °)



4.0 EXPERIMENTAL FACILITIES AND PROCEDURES

This section presents an overview of the various experimental facilities used to investigate

the SSVG. The initial proof-of-concept investigation was performed at the University of Kansas

supersonic wind tunnel. Additional experiments were performed at the NASA Langley Jet Exit

Facility and at the Langley 16 by 24 inch Water Tunnel.

4.1 University of Kansas Exneriments

The initial investigation of the SSVG was performed at the University of Kansas using the

supersonic wind tunnel. Two separate experiments were conducted: Schlieren flow visualization

and surface flow investigations.

4.1.1 University of Kansas Supersonic Wind tunnel

The experimental investigation of the supersonic vortex generator began with Schlieren

photographs taken in the 3 1/2" x 2" supersonic wind tunnel at the University of Kansas. These

experiments were conducted as a first step in the investigation of the potential benefits of the

SSVG. Figure 4.1.1 shows a photograph of the supersonic wind tunnel at the University of

Kansas with a flow visualization cavity model installed.

The supersonic wind tunnel at the University of Kansas is a suction-type, open flow wind

tunnel, see Figure 4.1.2. The test section sidewalls are made of optically pure glass to allow for

Schlieren system operation. During the experiments performed at KU, the throat area of the

tunnel was adjusted to provide a test section Mach number of 2.0, based on isentropic flow

assumptions. The mass flow rate of the wind tunnel was calculated to be 0.020 slugs/sec [ 0.29

kg/sec] assuming isentropic flow of air as a calorically perfect gas. The Reynold's number for

these experiments was approximately 1.5 million based on the height of the cavity.
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4.1.2 Schlieren Investigation

A wedge shaped model was made with the cavity engraved on the upper surface. Figure

4.1.3 shows the front and back of one of the VGs used for flow visualization. Table 4.1.1 gives

the geometry of the SSVGs used for this first investigation.

Table 4.1.1 Geometry of Vortex Generators Investigated at the University of Kansas

Configuration

A

Vertex Half Angle

(deg)

20

B 20

C 20

D 20

E 20

Ramp Angle

(deg)

15

15

15

8

15

Special Feature

Schlieren Model

Sloped Walls

Straight Walls

Shallow Ramp

Fiat Vertex

The initial proof-of-concept investigation was performed using the Schlieren sy stem associated

with the wind tunnel, see Figure 4.1.4. This system uses 5 inch mirrors to focus the light through

the test section onto a knife edge and then into a focusing and alignment tube. A f'llm screen

was attached to the end of the tube and photographs of density gradient visualizations were taken

of the test section using a Minolta Maxxum 7000, 35 mm camera with a 28-85 macro-zoom lens.

The model constructed for the ScMieren system investigation, designated configuration A, was

used to verify the existence of streamwise vortices and to determine the influence of the cavity

on the vortex development. Since the inflow was set at Mach 2.0, with an associated Mach wave

angle of 30 degrees, this configuration allowed for the investigation of the effects of a subsonic

cavity lip upon the vortex development.
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4.1.3 Surface Flow Visualization

A relatively new flow visualization technique was used at the University of Kansas to

investigate the surface flow patterns in and around the cavity. Using a variation of the technique

described in reference 8, the technique at KU employed colored water released through small

holes in the surface and observing the resulting streak-lines. The use of several different colors

of water allows the mixing characteristics of the surface flow field to be observed.

This technique was attempted at KU using standard food coloring mixed with tap water. The

water was fed to the model through tygon tubing to static pressure ports 1/16 th of an inch in

diameter drilled into the model, shown in figure 4.1.2. Six ports were drilled into the model.

Three holes were drilled upstream of the cavity in order to observe the flow through the VG and

three holes were drilled in the ramp area of the VG to observe the development of stagnation

regions. Three different colors of dye were used, red, yellow and blue. These colors allowed

for easy observation of the mixing of the flow in various parts of the cavity. Figure 4.1.3 shows

an installed VG in the wind tunnel for this investigation, including a view of the back of the

model with the tygon tubing attached to the drilled holes.

Several aspects of the VG design were investigated using the surface flow patterns.

Specifically, the effects of sidewall shape, vertex shape, and ramp angle were investigated. The

sidewalls were initially inclined relative to the ramp by an angle of 15 degrees. Wind tunnel

putty was used to vary the angle between 15 degrees and 0 degrees. The ramp angle was also

varied using wind tunnel putty. The VG was built with a ramp angle of 15 degrees; using the

putty, the angle was changed to approximately 8 degrees. Finally, the vertex shape was changed

using the wind tunnel putty, changing the relatively sharp vertex to a fiat vertex. All of the

variations of the original design are shown graphically in Figure 4.1.5.

Although the accuracy of these experiments left much to be desired, it was believed that the

gross effects of varying the above parameters could be investigated. The results of these

investigations were then used to help tailor the design configurations constructed at NASA

Langley.
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4...2.2 NASA Langley Exoeriments

The majority of the experimental investigation was performed at the Jet Exit Facility of the NASA

Langley Research Center 16 Foot Transonic Tunnel Complex. Models were mounted on a dual flow

propulsion simulation system in an acoustically treated ambient test chamber. A control room

adjacent to the test area offers access through a sound-proof door.

The Jet Exit Facility has a stand alone data acquisition system but shares its air supply with the

16 Foot Tunnel propulsion simulation system. This system uses a series of reservoirs, valves, filters,

and heat exchangers to provide clean, dry, stable airflow at a constant total temperature of 530°R

for mass flow rates up to 15 Ibm/see. Opposite the jet flow is a 5'x5' exhaust duct through which test

chamber airflow is vented to the atmosphere with noise suppression. Reference 9 provides further

details of the test facility.

4.2.1 Propulsion Simulation System

The test rig used for these investigations was originally designed for testing performed by Craig

Hunter (ref. 10). To reduce costs, inserts were made with the VG installed that could fit into the

nozzle designed by Mr. Hunter, as a result, most of the information concerning the actual test rig is

taken directly from the above reference. Figure 4.2.1 shows the dual flow test rig used in this study,

and Figure 4.2.2 diagrams the internal details of the dual flow propulsion simulation system. This

system supplies high pressure air to a test nozzle such that forces and moments produced by the

nozzle can be easily measured accurately. Choke points and backpressured plenums simulate a large

air supply reservoir.

As shown in figure 4.2.2, air passes through two primary air supply lines into an annular high

pressure plenum. From the HP plenum, air flows radially through a set of radially spaced sonic

nozzles into a low pressure plenum. This radial flow delivery scheme minimizes the effects of fluid

momentum forces on the balance, and the sonic nozzles provide a local choke point in the propulsion

simulation system. The effects of fluid pressure forces on the force balance are minimized by S tubes

that isolate and seal the metric and nonmetric portions of the propulsion simulation model.
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Once in the LP plenum, air flows through a circular to rectangular transition section, through

a choke plate for flow conditioning, and into an instrumentation duct. The choke plate used in

this test provides 62% area blockage to backpressure and stabilize plenum airflow and simulate

turbulent engine flow conditions going into the instrumentation duct and test nozzle. The

instrumentation duct contains comer and center mounted total pressure rakes, comprising a total

of seven pitot probes, and two iron-constantan thermocouples for total temperature measurement.

Air passes through the instrumentation section and into the test nozzle where it exhausts to

atmosphere.

4.2.2 Test Nozzle Geometry

The nozzle used in this test is a sub-scale, non-axisymmetric, two-dimensional convergent-

divergent (2D CD) nozzle with an expansion ratio of Ae/Ath= 1.797, a nominal throat area of

Ath = 4.317 in 2 [ 0.110 m2], and a width of 3.990 in.[0.1013 m]. Details of the nozzle channel

contour are defined in Figure 4.2.3. The convergent region of the nozzle is composed of a 2.000

in. [0.0508 m] radius circular arc and tangent 27.29 degree ramp which blends into a smooth

0.625 in. [0.0159 m] radius throat. A relatively steep 11 degree divergence ramp encourages

boundary layer separation at off-design conditions.

The test nozzle was designed with interchangeable divergent flaps such that the effects of

divergent surface modification on shock-boundary layer interaction and off-design performance

could be determined. Furthermore, the nozzle is equipped with full length, optical quality glass

sidewalls for focusing Schlieren and laser vapor sheet flow visualization. The photograph in

Figure 4.2.4 shows the nozzle installed on the propulsion simulation system with configuration

1 installed.

In addition to a baseline configuration, nine single VG divergent flap configurations and eight

multiple VG divergent flap configurations were tested. Table 4.2.1 details the physical geometry

of each cavity tested at NASA Langley, Table 4.2.2 gives greater details of the multi-cavity

configurations. The various configurations are shown in Figure 4.2.5 with the pressure

instrumented flap and an uninstrumented flap for each case.
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Photographsof someof the VGs tested are given in Figures 4.2.6 through 4.2.9. Note that

different flap configurations could be used on the test nozzle; for example, a single 60 degree vertex

VG and two 90 degree VGs. Such combinations could be used to investigate asymmetric flow effects

for thrust vectoring. However, all testing performed in the present study was conducted with

matching flap pairs, except for some Schileren results that show a comparison of the baseline flaps

and vortex generator flaps inserted in opposite divergent surfaces.

Table 4.2.1 Configuration Geometry for a Supersonic Vortex Generator Studied at NASA

Langley.

Configuration
Number

Number of Height Base Aspect

Cavities (in) (in) Ratio "_

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10-15 2

21 16

22 31

1.000 0.536 0.536

1.000 0.536 0.536

1.000 0.728

1.000 0.728

1.000 1.155 1.155

1.000 1.155

1.000 2.000

1.000 2.000

1.000 0.632

0.500 0.364

0.200 0.146

0.200 0.146

Depth

(in)
0.070

0.141

Area

Ratio (2)

0.0328

0.0328

0.728 0.070 0.0446

0.728 0.141 0.0446

0.070 0.0707

1.155 0.141 0.0707

2.000 0.070 0.1224

2.000 0.141 0.1224

0.632 0.141 0.0707

0.728 0.070 0.0223

0.728 0.028

0.728 0.028

0.0286

0.0554

(1) Aspect Ratio is defined as the length of the base divided by the height of the

cavity (b/h) See fi_:ure 3.2.1

(2) Area Ratio is defined as the total planform area of all cavities divided by the

area of the plate
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Table 4.2.2 Configuration Specifications for Multi-Cavity Configurations of a Supersonic

Vortex Generator Tested at NASA Langley

Configuration

Number

10

11

12

13

14

15

Relative Cavity Spacing

Side-by-Side; Touching

Side-by-Side;

1 Element Separation

Like Edges Touching

Like Edges Aligned

1/2 Element Downstream

Unalike Edges; Inline

Unalike Edges,

1/2 Element Downstream

Desired Effect

Complementary Vortex

Production

Independent Vortex

Production

Vortex Interaction at

Formation

Vortex Interaction after

Formation

Vortex Interaction at

Formation

Vortex Interaction after

Formation

4.2.3 Instrumentation

Nozzle air flow rates were calculated based on pressure and temperature measurements in a

calibrated multiple critical venturi (MCV) system located upstream of the propulsion simulation

model. The MCV system is rated to be 99.9% accurate in weight flow measurements. Forces

and moments generated by the nozzle were measured by a six-component strain-gauge balance

mounted on the propulsion simulation model centerline.

In order to acquire detailed data concerning the off-design flow characteristics of the 2D CD

nozzles, the test nozzle is equipped with high resolution pressure instrumentation. Six convergent
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section static pressure orifices and a static pressure orifice at the throat, all located on the upper

flap, were common to all configurations tested. Figure 4.2.10 shows the locations of the pressure

ports and the geometry of the nozzle flap. All pressure orifices on the test nozzle (convergent

and divergent flaps) were 0.020 in. [50.8 _tm] in diameter.

Details of divergent flap pressure instrumentation are shown in Figures 4.2.12. The baseline

configuration was equipped with a row of centerline and sideline (0.400 in. [ 1.02 cm] from the

sidewall) pressure orifice, again on the upper flap.

Individual pressure transducers were used for measuring pressures in the air supply system,

multiple critical venturi, instrumentation duct, and nozzle convergent section. Transducers were

selected and sized to allow the highest accuracy over each required measurement range.

Convergent and divergent flap pressures were measured by two electronically scanning pressure

(ESP) modules, located next to the propulsion simulation system in the Jet Exit Facility. Each

ESP module contained 32 individual pressure transducers capable of being recorded

simultaneously.

4.2.4 Data Acouisition

Voltage readings from the test nozzle, propulsion simulation model, and air supply system

instrumentation were recorded simultaneously. Steady-state data were acquired by averaging 50

frames of instantaneous data taken at a sampling rate of ten frames per second. Calibration

constants were applied to the steady-state voltage readings and corresponding forces, moments,

pressures, and temperatures were calculated.

Jet total pressure was measured from four corner rake pitot tubes and the three center rake

pitot tubes in the instrumentation section. The average total pressure was computed as the

arithmetic mean of the seven measurements. Jet total temperature was computed in a similar

fashion from two total temperature probes.

A detailed description of the data acquisition system and associated software can be found

in References 9 and 11. At the design NPR of 8.8, the Reynold's number was approximately 1.9

million at the vertex of the cavity based on the cavity height.
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4.2.5 Force Balance Calibration

The force balance was calibrated under jet-on and jet-off conditions using standard weight

elements. Balance loadings were made in each of the three force components (axial, normal, side)

and about each of the three moment axes (yaw, pitch, roll). Calibrations were conducted and system

tares calculated such that 95% of force data was correctable to within 0.5% of the balance full-scale

load limits. See References 11 and 12 for additional information.

Jet-off calibrations were performed to correct for the effects of installing the balance in the

propulsion simulation system. These calibrations determined the force-moment interactions existing

between the flow transfer system (S tubes) and the balance. Similarly, jet-on calibrations were used

to correct for interactions due to flow momentum transfer and S tube pressurization. Stratford choke

nozzles with documented performance were used for jet-on calibrations. The ideal thrust and weight

flow data was calculated assuming inviscid flow, see ref 11 for details.

4.2.6 Pressure Sensitive Paint and Static Pressure

The basic principles of pressure sensitive paint (PSP) were developed in the 1980s (ref 13).

Additional research has recently made this technique very practical (refs. 14-16). The governing

theory behind pressure sensitive paint is based on molecular photoluminescence. Luminescence,

which includes both fluorescence and phosphorescence, is a process which occurs when a

molecule emits electromagnetic radiation alter being excited from some ground state by an

absorption of electromagnetic radiation.

Fluorescence occurs in a molecular transition of electrons from an excited singlet state to a

ground singlet state. A molecule in a singlet state has equal numbers of electrons of opposing

spins; i.e. it is in a state of zero electron spin. In contrast, phosphorescence occurs in a transition

of electrons from a triplet excited state to a singlet ground state. A molecule in the triplet state

has two unbalanced electrons of the same spin and hence has a non-zero state of spin.

In both fluorescence and phosphorescence, a molecule starts from the ground level in a singlet

state and rises to the excited singlet state. An additional transition process may occur in which

the molecule enters the triplet state. The final excited state is largely random; however, more

19



energy is required for a molecule to make the transition through the singlet state into the triplet

state, and hence, this process occurs less frequently. Because of this additional energy

expenditure, molecules in the excited triplet state have slightly less energy than the excited singlet

state and are more resistant to transition to a lower energy singlet state. Figure 4.2.12 illustrates

several details of the luminescence process, showing the transition to both the singlet and triplet

excited states.

Fluorescence, the result of transition from the singlet excited state to the ground state, is a

relatively short process, with a duration of approximately 10 -9 to 10 -7 seconds. Phosphorescence,

on the other hand, is a longer process, taking from 10 -3 to 100 seconds (ref. 15). An important

point to note is that the wavelength of light energy emitted in luminescence is longer than the

wavelength of the excitation light, thus, the excitation light will not interfere with the

measurement of the luminescence intensity.

Figure 4.2.13 shows a diagram of molecular energy transition to the ground state. In addition

to emission in the form of fluorescence or phosphorescence, transition to the ground state can

take place through a molecular collision. In particular, collision with an oxygen molecule will

transfer energy from the excited molecule to the oxygen molecule. The end result is that the

excited molecule will no longer emit electromagnetic radiation, and luminescence does not occur.

This process is known as dynamic quenching (ref. 15).

On a larger scale, quenching reduces the overall luminescence of a given molecular

composition. The number of excited molecules that quench, and conversely the number that

luminesce, is a function of the number of oxygen molecules available for collision. In essence,

quenching becomes a function of the density of oxygen molecules in a given region. The greater

the density of oxygen molecules in the region, the more likely it is that quenching will occur, and

therefore luminescence will be reduced.

The Sturm-Volmer relationship can be used to describe luminescence of a molecular

composition being quenched. In the case where quenching is done by oxygen, where I is the

luminescence, IO is the luminescence with no quenching, Kq is the Sturm-Volmer constant, and

PO2 is the partial pressure of oxygen (ref 15);

Io/I"l+KqP02 (12 )
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It is important to note that both the Sturm-Volmer constant and the unquenched luminescence are

functions of temperature.

Equation 12 was used to study the relationship between luminescence intensity, partial

pressure, and the Sturm-Volmer constanL Figure 4.2.14 presents luminescence intensity as a

function of static pressure for several values of Kq. Calculations were made for dry air with

20.95% oxygen content.

Fig. 4.2.14 also shows that different values of Kq result in drastically different ranges of

pressure in which luminescence can be effectively measured. For example, for Kq=0.1, the

pressure range corresponding to roughly 90% of the luminescence scale is from 0 to 90 psia [0 -

621 kPa]. At Kq =1.0, that same percentage represents a pressure range of about 0 to 40 psia

[0 - 276 kPa].

Besides illustrating various pressure and luminescence ranges, fig. 4.2.14 shows that important

considerations must be made to use oxygen quenching of photoluminescence for any type of

quantitative measurement. As Kq increases, the amount of change in luminescence intensity for

a given pressure change also increases, meaning that higher values of Kq result in lower values

of luminescence intensity at high pressures, inferring that signal to noise ratios will be greater

in these cases (ref. 15). The overall conclusion is that compromises will have to be made to

achieve the widest possible pressure range with available measurement technology.

Techniques based on photoluminescence with oxygen quenching have been in development

for many years. Early applications were devoted almost entirely to flow visualization; no

attempts were made at quantitative measurement (ref. 13). Current efforts involving quenched

photoluminescence center around the use of a paint which contains a pressure sensitive

fluorescent dye. The PSP can be applied to a surface and illuminated with the appropriate light

to give virtually infinite spatial resolution in the measurement of pressure gradients across the

surface. In fact, the sole limiting factor in measurement resolution lies in the optical/video

system used to view and record data. The instrumentation system associated with the PSP

technique is shown in Figure 4.2.15.

McDonnelll Douglas Research Laboratories, a leading developer of PSP technology in the

United States, has released a certain amount of information on their progress. Most of the
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informationthat follows was discussed at an open meeting at NASA Langley Research Center.

Other information is known to exist, but is of a proprietary nature.

MDRL's paint process consists of multiple airbrushed layers, each with a specific function, as

shown in Figure 4.2.16. The first layer applied to a model is a coat of common white paint, used

to maximize the luminescent intensity recorded by the measurement system. The second layer is

a dear adhesive, used to securely bond the next layer, which contains the actual pressure sensitive

paint, to the model. MDRL's pressure sensitive paint formulation consists of a transparent, oxygen

permeable, chemical binder containing the luminescent "probe" molecules. The particular paint

mixture used for these experiments was based on a University of Washington formula which was

composed of 100 ppm platinum octaethylporphyrin dissolved in GP197, a proprietary mixture of

polydimethylsiloxane in 1,1,1-trichloroethane.

The PSP used in this test is excited by ultra-violet light, and fluoresces in a wavelength

corresponding to red. Because of excitation and fluorescence in the visible spectrum, ambient

light must be minimized. The recording system used filtered out the ultra-violet excitation light,

so the only light the system picked up was the red luminescent light and its reflection offofthe

white base layer. So, at a pressure corresponding to 100% quenching, and hence no luminescence,

no image would be detected by the recording system. With zero quenching, or full scale

luminescence, the surface in view would appear red to the recording system. Intermediate levels

ofquenchingOuminescence can be measured in temps of the relative red level intensity emanating

from the test surface.

The Sturm-Volmer model has unquenched luminescence (Io) as a parameter. Since

measurement of Io in a non-oxygen environment would be nearly impossible, light images are

recorded under static and wind-on conditions. The resulting images are aligned and the intensities

computationally ratioed to determine relative surface luminescence intensities, thus eliminating the

need for Io. Because of the temperature sensitivity of the Sturm-Volmer model, temperature was

monitored using an infra-red camera. Little temperature variation occured across the nozzle plate

so no temperature calibration was made. In addition, pressure taps were used at selected locations

for in situ calibration of the PSP measurement system.

The results of this experiment were obtained using a 14 bit digital camera with 512x512 pixel

resolution. The images were mapped to a 256 level greyscale, and analyzed for luminescence
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intensity. Combined with static pressure values obtained using the ESP modules, the

luminescence intensity was used to determine the surface pressures.

There are several problems with the PSP technique that limit it's effectiveness. Early versions

of the paint caused increased model skin friction, resulting in errors in force and moment balance

measurements. Subsequent efforts have produced a paint formulation and application process that

produces surface finishes and thicknesses comparable to those on existing wind tunnel models.

The current paint formulation is quenched only by oxygen; as such test media is restricted

to gas mixtures that contain oxygen and will not interfere with the quenching process. In

addition, the paint is temperature sensitive, so the accuracy of pressure measurement is dependent

on the accuracy of temperature measurement. Efforts are being devoted to develop paint

formulations that could quench in different gasses and that are temperature independent. An

obvious solution to the temperature problem would be to develop a paint that has measurable

sensitivity to both temperature and pressure.

Current paint formulations have an upper pressure limit where fluorescence intensity decreases

to a level that is below the measurement capability of the video system. That upper limit is

about 46 psia [317 kPa] in air for current paint formulations and available video technology.

That is based on the partial pressure of the oxygen in the air, so a gas mixture with a lower

oxygen content would allow higher pressure measurements. As a result of this limitation, static

pressure taps were installed on all models used to verify the PSP results.

In addition to pressure range limitations, there are limitations in the free stream Mach number

range at which PSP will function. For a given wind tunnel model, low freestream Mach numbers

result in small pressure changes, and hence small changes in fluorescent intensity; however, since

all the experiments conducted for the VG were performed in the transonic and supersonic flow

regimes, this problem was not a concern.

The durability of PSP is comparable to that of conventional model paints (ref. 13), but the

PSP application process is much more critical. In addition to the complexity of the multi-layered

paint coat, the thickness of the PSP layer must be strictly controlled; abnormal variations in PSP

thickness can cause considerable variations in luminescence intensity and may directly affect the

flow. Also, the PSP layer is vulnerable to oil, either in the form of droplets in the airflow, or

from handling. Certain oils will interfere with the luminescence measurements, or even
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luminesce on their own. The conclusion is that PSP models must be handled and tested carefully

to avoid any sort of damage or contamination of the paint surface.

A f'mal problem lies in data reduction, where model movement during a tunnel run can cause

a misalignment between static and wind-on images. Uniform movement of the model through

changes in position or rigid vibration can be compensated for, but any type of model deformation

would require complex methods of alignment.

The painfs response time was on the order of 0.1 to 0.2 seconds. This is not quick enough

to measure any type of turbulent phenomena, but would allow measurement of many of the

pressure fluctuations present in aerodynamic testing. PSP measurements have been shown to be

relatively accurate, details of the error analysis are discussed in reference 17.

A PC-based computer program has been developed for the processing of PSP data obtained

from these experiments. The program uses a polynomial warping technique to perform geometric

transformations on the wind-on images. An in-situ calibration technique was implemented to

compute the PSP calibration coefficients. These coefficients were then used to ratio the wind off

to the wind on images to obtain the surface pressure maps.

4.2.7 Focusin_ Schlieren Flow Visualizatioii

Due to the nature of this study, graphic information on shock-boundary layer interactions and

vortex propagation was essential. Performance requirements and space limitations dictated the

need for a compact flow visualization system that would provide high quality results. In addition,

the harsh environment of a nozzle test stand necessitated a system that would be resistant to

misalignment due to vibration and aeroacoustic loading. Recently, several low cost, large field

focusing Schlieren systems have been demonstrated in various facilities at NASA Langley

Research Center with a high degree of success (ref. 18). Such a system was a clear choice for

this investigation.

Figure 4.2.17 shows the optical specifications of the focusing Schlieren system used in this

test, and the layout of the optical system is shown in Figure 4.2.18. A photograph of the

installed system is shown in Figure 4.2.19. The system was designed and built based on criterion

developed by Weinstein (ref. 18). This particular system has a 133mm diameter field of view,
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a sensitivity of 17 arcsec, a resolution of 0.25mm, a depth of sharp focus of 4.6mm, and a depth

of unsharp focus of 36mm. Simply stated, this means that the system deflects light by 17 arcsec

for a 10% change in brightness, it can resolve flow features down to 0.25mm, it can sharply

focus on flow features within a 4.6mm "slice" of flow, and it effectively blurs 2mm flow features

outside an analogous 36mm slice. Overall, the system is well configured for the present study.

The light source for the focusing Schlieren system is a xenon strobe flash tube. A driving

circuit picks up synchronous pulses generated by the recording video camera and triggers the

flash at a 30 Hz rate with pulses of 0.6 microsec, duration and 0.05 watt-sec, power. Along with

a high resolution CCD camera, a 70mm Hasselblad still camera recorded the results.

The focusing Schlieren system was assembled on a 44 in. x 66 in. [1.12m x 1.68m] platform

which was in turn mounted to rails attached to the dual flow test stand. The relative compactness

of the system did not interfere with model changes.

Source and cut-off grids were oriented vertically such that the system was sensitive to

streamwise density gradients. The laminar to turbulent transition of the shear layer is clearly

visible along with the wave structure of the jet. The design of the optical system did not

compensate for glass sidewalls of the actual test nozzle, since doing so would have decreased the

capability of the system to focus on flows similar to those investigated here. In the configuration

used, the focusing Schlieren system offered a good compromise of flow quality looking through

the glass sidewalls and visualizing free jet flows where no glass sidewalls were present.

4.2.8 Laser Light Sheet Flow Visualization

The vortex structure of the VG was also investigated using laser light sheets. Water mixed

with a yellow Fluouracene dye mixture was injected through the upstream pressure ports. Laser

light sheets were traversed through the flow field and allowed visualization of the 3-D vortex

structure. For each of the configurations, ten standard positions were illuminated; additionally,

each configuration's flow field was traversed to show the entire structure from the throat of the

nozzle out past the end of the nozzle with the results recorded on standard videotape. The

investigation of the vortices outside the nozzle allowed for an investigation of the interaction of

the vortices with the ambient air.
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4.2.9 Water Tunnel Flow Visualization

Water tunnel flow visualization of the VG was performed at the 16 by 24 inch [0.41 by 0.61

m] water tunnel at NASA Langley. This facility is a closed return water tunnel capable of test

section velocities from 0 - 0.75 ft/s [1.9 era/s] with flow through the 16 in. by 24 in. [0.41 x

.0.61 m] test section in the downward (vertical) direction. The velocity for this experiment was

0.25 ft/s [0.63 cm/s], where the most uniform flow occurs and it was slow enough to easily

observe the vortex flow with the unaided eye, although, several tests were run at 0.67 fps [1.7

cm/s]. Details of the water tunnel facility are given in reference 19. Figure 4.2.20 shows the

water tunnel and related components. Figure 4.2.21 shows the flow diagram for this system.
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Figure 4.1.1 The University of Kansas Supersonic Wind Tunnel

Bell Mouth_ sTest Section

Airflow _ I ' _ Vacuum Tanks

-_) Not to Scale
Discharge To _
A tn'esptere Va.cuum Purnps

Figure 4.1.2 Schematic of the Supersonic Wind tunnel at the University of Kansas
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Figure 4.1.3 Supersonic Vortex Generator Tested at KU (Top: Front view, Bottom:
Back view)
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Figure 4.1.4 Schlieren Flow Visualization System Used at the University of Kansas
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Figure 4.2.1 Photograph of Dual Flow Propulsion Simulation System
(Langley Photo L93-11623).
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Figure 4.23 Test Nozzle Channel Contour (from ref. 10)
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Figure 4.2.4 Active Control Nozzle with Installed Divergent Flap and Cavity
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Figure 4.2.6 Photograph of Configuration 6 (0 = 30 °, 5 = 8 °)
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Figure 4.2.7 Photograph of Configuration 11 (2 cavities, 0 = 20 °, 8 = 8 °)
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Figure 4.2.8 Photograph of Configuration 21 (16 cavities, 0 = 20 °, _i= 8 °)
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Figure 4.2.9 Photograph of Configuration 22 (31 cavities, 0 = 20 °, _ = 8 °)
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Figure 4.2.12 Molecular Photoluminescence Transition Processes (from ref. 15)
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Figure 4.2.13 Molecular Energy Transition to the Ground State (from ref. 15)

42



1.00

0,80

0.60

040

0.20

0.00

-- -- Kq.O.6

0 10 20 30 40 50 60 70 80

Pl'llesutre,

Figure 4.2.14 Sturm-Volmer Relationship for Air (from ref. 15)
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Figure 4.2.15 General PSP Instrumentation System (from ref. 15)
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Figure 4.2.16 MDRL Paint Process (from ref. 15)
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5..__.0 RESULTS AND DISCUSSION

This section discusses the results of the tests used to investigate the supersonic vortex

generator developed at the University of Kansas.

5.1 University of Kansas Flow Visualization

Two different flow visualization techniques were used at the University of Kansas in order to

compliment the experiments planned at NASA Langley. Schlieren photography and a relatively

new surface flow visualization technique were used to track the vortices.

5.1.1 Schlieren Flow Visualization

The Schlieren system produced several good pictures which clearly show the generation of

streamwise vortices as well as the compression Mach waves produced by the flow dipping into

the cavity and then moving up the ramp and the centered expansion fan at the end of the ramp.

Figure 5.1.1 shows a typical Schlieren photograph from this test, with no flow. Figure 5.1.2

shows the same VG with a test section Mach number of 20. The Schlieren pictures clearly show

a vortex forming within the cavity and Iraveling downstream near the surface of the plate. Figure

5.1.2 shows the vortices as a pale shadow along the edge of the cavity. The core of the vortex is

shown to lift off of the surface of the plate slightly and extend downstream past the centered

expansion fan at the trailing edge of the ramp. Additionally, the compression Mach waves created

by the distributed turning of the flow created by the ramp, show that at least near the surface, the

flow is essentially isentropic.

5.1.2 Surface Flow Visualization

The surface flow visualization system was first used to investigate mixing and flow

development within the cavity. Figure 5.1.3 shows a typical surface flowpattern for a ramp
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angleof 15 degrees. In the test condition corresponding to figure 5.1.3, dye was injected from

three upstream ports to visualize how the airflow mixed through the cavity. Figure 5.1.4 shows

the same cavity as in figure 5.1.3 only in this test, dye has been injected from ports inside the

cavity. This figure illustrates the mixing of the flow for only one of the streamwise vortices.

Figure 5.1.5 shows the cavity with dye injected from three ports inside the cavity.

The surface flow visualization investigation at KU demonstrated several important design

considerations that were later employed in the NASA Langley tests. In figure 5.1.3, the presence

of the vortex created a region where most of the dye was swept away from the surface. On the

upper portion of the same figure, the vortex can be seen as the light band between two darker

orange regions of non-vortical flow. The fluid near the vertex is very red, indicating that the

majority of the flow in the stagnation region came from the lower portion of the cavity; this may

have been caused by asymmetric manufacturing flaws in the construction of the cavity. Ideally,

no such asymmetry would be present in the flow. The reason for this large stagnation region will

be discussed later.

Flow visualization was also used to investigate the effects of ramp angle, 5, on the vortex

development. Figure 5.1.5 shows a cavity with a ramp angle of only 8 °. Figure 5.1.6 shows the

interior of the cavity in detail.

The shallow ramp investigated seems to indicate that the ramp angle can have a significant

effect on the flow within the cavity as well as the generation of the vortices. In this

configuration, the size of the stagnation region near the vertex was significantly reduced.

Additionally, the amount of backflow towards the vertex appears to have been reduced or

eliminated; note the yellow color near the vertex as opposed to the reddish color in figure 5.1.3.

Unfortunately, this investigation did not determine how the strength of the streamwise vortices

was affected by the shallower ramp. Because of this, the NASA Langley investigations included

both a deep and a shallow ramp configuration for every wall angle investigated.

The wall angle effects on the flow was also investigated using surface flow visualization.

Figure 5.1.7 shows upstream flow patterns in a cavity with straight walls. Figure 5.1.8 details

the interior of a straight walled cavity.

In figure 5.1.7, the size of the stagnation area is reduced, although not as much as it was

reduced by a shallow ramp angle. Backflow is still clearly present as indicated by the color of
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thedyenearthevertexin figure5.1.8. As with theshallowrampinvestigation,nodetermination

of theeffectson thestrengthof thevorticeswaspossible.

Finally,theeffectsof vertexshapeon the stagnationregionwereinvestigatedusingsurface

flowvisualization.Figure5.1.9showshowupstreamflow isaffectedby astraightvertex. Figure

5.1.10detailstheinteriorof thecavity.Note,noyellowdyecouldbeinjectedin thisconfiguration

sincetheport nearthevertexwascoveredwhenthevertexshapewasflattened.

Thelargestagnationregionneartheflatvertexdramaticallydemonstratestheneedfor a sharp

vertexshape.By usingaflattenedvertex,thecontourednatureof thecavitywasnoteffectivein

creatingvorticesand,in essence,theVG hadbecomeabackward-facingstep. Therefore,using

theresultsobtainedfrom thetestsat KU, thevariousconfigurationsat NASA Langleycouldbe

designedmore efficiently. Additionally, the relatively largeradiusof curvatureof the KU

configurationswhencomparedto the NASA-Langleymodelsalso explainswhy thereareno

significantstagnationregionsin theNASA photos. Additionalphotosof eachof the various

situationsinvestigatedareshownin AppendixA.

5._..22 NASA Langley Flow Visualization and Static Pressure Tests

Extensive testing of the supersonic vortex generator was performed by the engineers at NASA

Langley's Jet Exit Facility. While there were a total often single cavity configurations tested, only

one will be discussed in detail. Configuration 6 was selected as the sample cavity since this

particular configuration seemed to generate the strongest vortices. Configuration 6 had a vertex

half-angle of 30 ° and a ramp angle of 8 o. Additionally, six double cavity configurations and two

multi-cavity configurations were also tested. Only certain configurations will be discussed here,

since many of the configurations provided little additional information
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5.2.1 Thrust and Performance Determination

Using the installed capabilities of the Jet Exit Facility, the thrust and weight flow through the

nozzle were measured for each configuration tested. In addition, the PSP and pressure tap data

were obtained simultaneously. Figure 5.2.1 shows the performance of configuration 6 at various

NPRs. The left-most graph shows the gross thrust to ideal thrust ratio, while the central graph

shows the net thrust ratio. The right-most graph shows the weight flow ratio for the same nozzle

configuration. Figure 5.2.2 shows the effects of two cavities in the flow, in this case configuration

11. Figure 5.2.3 shows the effects of configuration 21 on the performance. Figure 5.2.4 shows

configuration 22. Configuration 22 is shown since there are several differences between the thrust

ratios of configuration. 21 and 22.

The use of a supersonic vortex generator was expected to produce a reduction in thrust due

to the generation of shockwaves. It was hoped that if the generated compression waves were

weak, that the loss of thrust would be acceptable when compared to the gains due to vortical flow.

At the design NPR of 8.8, the difference between the flat plate and cavity thrust ratios was

approximately 0.5%. While a greater loss of thrust was observed at lower NPRs, the loss was

0.5% or less over a surprisingly large NPR range, from 3.5 to 10, with a minimum occurring near

NPR=5.0. The largest thrust loss occurred at NPR=2.0 and was aproximately 3.5%. The other

configurations showed similar results. There was a noticeable reduction of thrust at the lower

NPRs, where the nozzle is overexpanded and a shock wave sits inside the divergent portion of the

nozzle. This is expected since the cavity would postpone the shock wave and this delay would

allow greater expansion of the supersonic flow and a resulting stronger shock.

No trend was identified in the weight flow measurements.

Calculation of the ideal performance parameters was performed by the Data Aquisition system

and the equations are given in reference 11. The error in these calculations is approximately

0.25%.
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5.2.2 Pressure Sensitive Paint and Static Pressure Tap Measurements

The PSP data technique was supplemented by using a matrix of static pressure ports located

along one side of the cavities under investigation. These results could then be compared and

used to validate each other. The static pressure measurements were also used to calibrate the

PSP results. As mentioned previously, the PSP technique had never been used at the pressures

that were expected in the nozzle; therefore, the pressure taps were considered a necessity if

meaningful pressure data was to be obtained. As it turns out, the PSP technique worked very

well for all NPRs and configurations tested.

The ESP modules used to measure the static pressure provided raw data that was used to

generate pressure contour plots of the nozzle, with the pressure taps shown as circles. A cubic

spline curve fit was used to generate the contour lines shown.

The PSP data was digitized and saved on computer disk. These images were then in situ

calibrated using ESP data and printed out using specially designed computer graphics software.

The single cavity configurations were investigated first. Tracking the "footprint" of the vortex

was desired. Figure 5.2.5 shows the ESP pressure contour for configuration 6 at NPR=2. The

numbers at the end of the pressure contours are the ratio of static pressure to total pressure, the

same ratio is used in the PSP data. Figure 5.2.6 shows the same information using PSP.

These figures show the cavity prior to the formation of vortices at NPR=2.0. At this NPR,

the nozzle shock wave is situated near the middle of the cavity. It is immediately obvious that

the PSP data is far more detailed than the ESP data. The shock wave is clearly defined in the

PSP picture, yet barely discernable in the ESP picture. The vortices developed in the supersonic

region of the cavity are visible in the PSP data but are not visible in the ESP data.

Figure 5.2.7 shows configuration 6 at the design NPR of 8.8; Figure 5.2.8 shows the same

data using PSP. Here, the difference in resolution between the PSP and ESP data is even more

apparent. The ESP data failed to capture the true path of the vortex inside and outside of the

cavity even with a relatively densely packed array of pressure taps. Additionally, the ESP data

did not capture the relatively large high pressure region within the cavity caused by the

compression Mach waves of the flow turning up the ramp.
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When the multiple cavity configurationswere investigated,studyingthe interactionof the

vortices was a priority. While several configurations provided information about the vortex

interaction, configuration 13 demonstrated the most dramatic results and those are detailed here.

Figure 5.2.9 presents the ESP picture of configuration 13 at the design NPR of 8.8. Figure 5.2.10

shows the PSP results for the same conditions. Again, the ESP data was not able to accurately

capture the vortices locations. Additionally, the ESP data does not show how the vortices from

the upstream cavity interacted with the downstream cavity. The PSP pictures, on the other hand,

clearly show the reenforcement of the left vortex of the upstream cavity as it intersects the lip

of the downstream cavity. The central emerging vortex is clearly stronger than either of the

outward vortices. The ESP data also failed to show the Mach wave signature visible off of the

vertex of both cavities. Again, the PSP data showed the region of high pressure in the cavity that

the ESP data only showed in the downstream cavity.

The effect of the ramp angle on the development of the vortices is illustrated in Figure

5.2.1 la. This figure shows the PSP data for configuration 5, which has a shallow, 4 ° ramp The

vortices developed by the shallow ramp are not as strong as the ones generated by the deep ramp.

Also, the stagnation region near the vertex is smaller than the region for configuration 6. This

test verified the results obtained at KU. However, as shown in the KU investigations, if the ramp

is too deep, a large stagnation region can form at the vertex of the cavity, reducing the

effectiveness of the vortex generator. Thus, there is a design trade-off necessary to create a

cavity shape that will generate strong vortices while minimizing losses due to the stagnation

region.

Figure 5.2.1 lb shows how a supersonic cavity lip can affect the vortex development. When

the cavity lip is exposed to supersonic normal flow, the cavity does not generate strong vortices.

As can be seen from the figure, only a very weak vortex pair are created by this configuration.

When the upstream flow is exposed to a supersonic lip, the cavity acts like a backward-facing

step.

One cavity was designed with a cubic spline shaped lip. This configuration is shown in

Figure 5.2.1 lc. The cubic spline shaped lip shows that most of the vortex is developed in the

subsonic lip region. Additionally, there is a high pressure region located at the inflection point
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of the cavity walls. This high pressure region was caused by the shock wave created when the

flow turned into itself inside the cavity.

The effect of the cavity on the shock structure of an overexpanded nozzle was investigated.

The shock structure at NPR=3.0 on configuration 6 is shown in Figure 5.2.11d. The same

configuration is shown at NPR=3.5 in Figure 5.2.1 le. At an NPR of approximately 3.5 the

nature of the shock structure at the base of the cavity changed. In figure 5.2.1 ld, the shock wave

caused by the overexpanded nozzle is located near the baseline of the cavity at NPR=3.0.

Clearly, the shock is delayed in a region just downstream of the cavity as was expected. The

nature of this delay in the shock has changed by NPR=3.5. In figure 5.2.1 le, the region where

the shock is delayed is associated more with the emerging vortices. At this NPR, the first

indications of the flow path of the vortices becomes visible. Additionally, the vortices were

strong enough to penetrate the shock wave and continue downstream in the subsonic regime.

Unfortunately, due to the small size of the cavities, pressure information for configurations

21 or 22 was not obtained. For the ESPs, the size of the cavities were the same order of

magnitude as the size of the orifices. For the PSP data, the paint filled the small cavities and this

technique could not be used. Additional cavity configurations are shown in Appendix B.

5.2.3 pSP Error Analysis

Detailed error analysis of the ESP and PSP data was performed and the results published (ref.

20). The following is a brief summary of that analysis. Table 5.2.1 summarizes the percent error

in PSP pressure measurement relative to the ESP tap data for configuration 8 at several NPR

values. Listed in this table are the NPR, number of ESP taps used to calibrate the PSP, the range

of pressure spanned by the ESP taps, mean relative error in PSP measurement, and the

uncertainty in PSP measurement at 95% confidence level.
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Table 5.2.1. Summary of PSP Analysis Results for Configuration 6 of the C-D Nozzle

NPR No. Range of ESP e Pressures 2t_ of ESP-PSP

ESP Pressures (psi) (psi)

(psi)

2.0 32 7.3 - 15.5

3.0 29 6.3 - 14.7

3.5 29 7.3 - 17.2

4.0 29 7.8 - 19.8

5.0 30 9.1 - 24.8

6.0 31 10.9 - 29.9

7.0 30 12.8 - 35.0

8.0 30 14.7 - 40.1

8.8 30 16.2 - 44.2

10.0 30 18.5 - 50.5

2.13 0.55

2.11 0.56

2.13 0.58

2.29 0.64

2.58 0.83

2.61 1.06

2.38 1.11

2.39 1.34

2.58 1.63

3.33 2.28

Note, this configuration of the nozzle had 34 ESP taps, some of which could not be used for

the data obtained in Table 5.2.1. Note also that the modules have 100 psi range and an accuracy

of 0.25% of full scale. This 0.25% accuracy translates into 0.25 psi [ 1.7 kPa] uncertainty in

pressure measurement.

The increase in mean relative error and pressure measurement uncertainty as NPR increased

was attributed to several factors. As mentioned earlier, the PSP emission intensity is related to

the inverse of the pressure. Since the light integration time for the camera was fixed during the

experiment, the signal to noise ratio of the intensity measurement decreased with increased

pressure measurement error. Other contributing factors were the wider pressure span and larger

surface temperature variations of the model at higher NPRs.
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5.2.4 F_using Schlieren Flow Visualization

The focusing Schlieren system allowed a detailed analysis of the shock-cavity interactions to

be performed at various NPRs for various configurations. Figure 5.2.12 shows a photo taken

along the centerline of the cavity for configuration 1 at NPR=2. Figure 5.2.13 shows the same

NPR for configuration 6. In both cases a cavity was installed on the lower surface of the nozzle

with a flat plate installed on the upper surface. Additional configurations and NPRs can be found

in Appendix B.

In both cases, the forward leaning edge of the passage X-shock structure was significantly

reduced. When a larger vertex angled cavity was placed in the same flow, figure 5.2.13, the X-

shock was almost completely eliminated.

The effects of a single cavity installed verses having a cavity installed on the upper and lower

surface was also investigated. Figure 5.2.14 shows configuration 6 installed only on the lower

surface at design NPR, while Figure 5.2.15 shows a cavity installed on both the upper and the

lower surface. Additional configurations are shown in Appendix B.

The weak shock emanating from the lower flap of figure 5.2.14 is due to the concave

curvature of the streamlines into the cavity, see figure 3.2.1. Also, the centered expansion fan

at the base of the cavity is caused by the flow emerging from the cavity and turning out of itself

to travel along the plate. Unfortunately, the focusing Schlieren system was not able to image any

of the vortical structures generated by the cavities.

The Schlieren system did not provide additional information when multiple cavity situations

were investigated. This was due to the limiting nature of the focusing system. The location of

the vortices was not known in advance and the system could not be refocussed to locate them.

As a result, no additional information was gained.

Configurations 21 and 22 both allowed for an investigation of the effects on the shear layer

of the emerging jet. Configuration 22 provided clearer results since the cavities were installed

farther away from the lip, allowing the vortices to develop further. Figure 5.2.16 shows

configuration 22 at design NPR, the cavities were only installed on the lower surface.
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In the figure, there is a definite increase in the mixing rate of the emerging flow. This is due

to the vortical nature of the emerging flow into the shear layer. The vortical flow entrains

additional stagnant air, thereby reducing the overall mixing length of the nozzle exhaust.

5.2.5 Laser Light Sheet Flow Visualization

The laser light sheet was used to visualize the vortices at various selected streamwise locations

relative to the cavities. Additionally, sweeps of the nozzle were performed to dramatically

demonstrate the entire vortex structure. The laser information was saved onto standard VHS

videotape and still pictures were made of the desired frames. The camera was mounted behind

the nozzle, so all pictures were taken looking into the nozzle with flow coming out of the page.

Unfortunately, due to buffeting of the camera during nozzle operation, many of the pictures

were fuzzy. However, several good views were obtained and Figure 5.2.17 shows the

development of the streamwise vortices for configuration 6. The right side vortex development

was captured in the figure; however the lett side vortex was not as well shown. This technique

allowed the location of the vortices to be determined in 3-D space. Previous tests had only been

able to determine the "footprint" of the vortex in the X-Y plane; with the laser, the Z location of

the vortex was visualized for the first time. As predicted, the vortex remained very close to the

lower surface.

Some information about the interaction of the vortices for multiple cavity was obtained.

Figure 5.2.18 shows how the four vortices interact for configuration 13. In this case, the two

cavities were located such that two of the emerging vortices between them combined into one

larger vortex. This can be seen in the figure as a much larger and more defined vortex between

two normal sized vortices. Vortex destruction was also possible by placing VGs in locations that

would cause the inner vortices to cancel each other out. Several additional configurations are

shown in Appendix B.
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5.2.6 Water Tunnel Flow Visualization

Several configurations were investigated in the NASA Langley water tunnel facility. Both

dye injection and laser light sheet photos were taken. The water tunnel tests were used to better

understand the generation of the vortices within the cavity itself. Since the Reynold's number

of the water flow was orders of magnitude lower than that of the supersonic nozzle, any

conclusions drawn from these tests must be guarded. Additionally, since the water flow is

viscous dominated, the effects of viscosity on the generation of streamwise vortices is clearly

evident since these vorticies still formed even without supersonic flow. Figure. 5.2.19 shows how

a stagnation region forms at the tip and the vortices develop outward from there. The photo also

shows the relatively large boundary layer flow that travels along the wall and exits without being

entrained into the vortex. The core of the vortex is clearly visible in the upper structure. When

this picture is combined with those taken at KU (see figures 5.1.3-6) a better understanding of

the nature of the flow within the cavity is obtained.

The laser light sheet used to visualize the water flow produced perhaps the most stunning

photos of the entire investigation. Figure 5.2.20 shows both counter-rotating vortices as they

emerge from the cavity. The internal structure of the vortices is clearly visible. In this figure,

the picture was taken looking into the flow with the laser sheet cutting the flow near the base of

the cavity.

The streamwise evolution of the vortex can be seen in Figure 5.2.21. Here, the laser was

directed along the lip of the cavity, with flow from right to left. This picture details the nature

of the vortex as it gathers strength from the surrounding flow as it progresses up the cavity ramp.

Additional photos are in Appendix B.

The use of the water tunnel allowed investigation of a backward facing cavity. In particular,

the shear layer interactions could be investigated. While this design would not be practical in

supersonic applications, it did provide some useful insight into the nature of shear layer

interaction for this type of shaped cavity. Figure 5.2.22 shows configuration 5 backwards in the

flow. This photo dramatically revealed the streamwise evolution of Kelvin-Helmholtz instabilities

generated by mixing the stagnant water inside the cavity with the moving water of the tunnel.
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Figure 5.2.23 shows the same configuration, this time viewed into the flow. The internal cell

structure of the instabilities are detailed.

5.3 Comnutational Fluid Dynamics Results

The evolution of counter-rotating streamwise vortices in supersonic flow was determined

using computational fluid dynamics techniques to determine if current CFD codes were adequate

in predicting the complex flow created by a supersonic vortex generator. For this purpose, the

PAB3D code developed by engineers of the propulsion aerodynamics branch at NASA Langley

was used, with the computations being performed on the CRAY Y-MP computer system at

NASA Langley. Two flow regimes were investigated in preliminary testing, a flat plate model,

and a cavity in the divergent portion of a C-D nozzle. The model used simulated the conditions

that a cavity would see under different types of flow. The geometry of the cavities investigated

was the same as those used in the NASA Langley experiments. Whenever the configuration

geometry was used, the configuration number from the experimental results was utilized.

5.3.1 Flat Plate Modelling

The initial computational investigation of a shaped cavity in supersonic flow was made using

a flat plat model. In this situation, the cavity was placed into a Mach 2.0 flowfield over a flat

plate with infinite boundaries.

Figure 5.3.1 shows an intermediate solution for static pressure within the configuration 1

cavity. Figure 5.3.2 shows the solution for configuration 6. In these figures, the locations of the

vortices was clearly shown. A relatively large region of high pressure was located at the base

of the cavity, this high pressure region was detected in the experimental investigations. The

relative strength of the vortices due to the cavity shape can also clearly be seen. In figure 5.3.2,

the vortices are much stronger than those in the narrower cavity in figure 5.3.1. Although the

solutions obtained for the flat plate model did converge, they are presented here as intermediate

solutions due to grid problems discovered later in the investigation. These grid problems will

be discussed in detail later in this report.
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5.3.2 Exoandinu Flow Modellinu

The grid files were modified following the fiat plate investigations to conform with the nozzle

inserts used in the experimental investigation. Unfortunately, this is where the grid matching

problems first manifested. Due to the improper matching characteristics between the grid blocks,

the vortex information was not properly transmitted to the downstream block (block 4). As a

result, no converged solutions were obtained. After 156 full-grid iterations, the downstream

absolute pressure was calculated to be less than zero, and no further iterations using this grid

were possible.

5.3.3 Grid Resolution Problems

The inability of the PAB3D code to converge to a meaningful solution has been traced to the

grid generation. The grid generated for the expanding flow model was not smooth enough. The

following problems were identified.

Figure 5.3.3 shows the grid viewed from an oblique angle, with the problem areas

highlighted. The grid spacing at the end of block 1 and the beginning of block 2 are not

identical. Additionally, the grid spacing between the end of block 2 and the beginning of block

4 are also not equal. As a result, the code cannot converge. These problems can be easily

solved by adjusting the parameters in the ssvg.dsg input f'de to equally space the adjoining

blocks.

Figure 5.3.4 shows a view of the grid from above. In this figure, the problems with the grid

spacing are much more pronounced. First, the grid expands much too rapidly away from the

walls of the cavity and from the expected vortex path. The solutions to this problem are more

complex. A combination of increasing the number of grid points defined outside the boundary

layer, increasing the boundary layer thickness definition and increasing the starting interval within

the boundary layer are necessary. Since each of these parameters effects the others, an iterative

approach must be taken to ensure a smooth grid with a boundary layer dense enough and large

enough to capture the large pressure gradients within the streamwise vortices being created by

the cavity.
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The location of the boundary layers used to capture the vortices in block 4 also caused

problems. Due to the large pressure gradients within the vortices, the exact location of the vortex

must be known to ensure that the boundary layer grids capture the entire flow. The location of

the boundary layer grids must be adjusted by modifying the ssvg.in file parameters. This process

proved long and tedious, especially since the exact location of the vortex was not originally

known. Once the experimental data determined the exact location and flowpath of the vortices

for a given configuration, the boundary layer grid could be modified to ensure capture of the

emerging vortex. However, the experimental data showed that the location and path of the

vortices were configuration dependent. As a result of this finding, the boundary layer definitions

must be modified for each configuration. The use of an adaptive grid generation scheme in this

situation might provide greater flexibility in designing the grid for vortex capture. The PAB3D

code could be modified to allow the use of an adaptive grid generator.

In addition to the grid spacing problems, a problem with the quality of the inflow was

discovered. To solve this problem, additional inflow blocks must be included in any future grids.

The inflow area should include a region of constant area followed by the convergent portion of

the nozzle and the throat, then the divergent portion already defined should be used. Figure 5.3.5

shows a sample of the necessary block and grid definitions.

63



Figure5.1.1 SchlierenPhotographof Configuration A, No Flow (0 = 20 °, 8 = 15 °)

Fk)W

Figure 5.1.2 Schlieren Photograph of Configuration A, Mach = 2.0 (0 = 20 °, _i= 15 °)
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Flow

Figure 5.1.3 Surface Flow Pattern with Dye Injected for Surface Flow

Visualization, Configuration B, Indented Walls (0= 20 °, 8= 15 °)

Flow

Figure 5.1.4 Surface Flow Pattern with Dye Injected for Surface Flow

Visualization, Configuration C, Straight Walls (0= 20 °, _- 15°)
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F low

Figure 5.1..5 Surface Flow Pattern with Dye Injected for Surface Flow

Visualization, CQnfiguration D, Shallow Ramp (0= 20 °, 6= 15 °)

Flow

Figure 5.1.6 Surface Flow Pattern with Dye Injected for Surface Flow

Visualization, Configuration E, Straight Vertex (0= 20 °, 6= 15 °)
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Figure 5.2.1 Performance Data for Configuration 6 (0=30 °, _- 8 °)
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Figure 5.2.2 Performance Data for Configuration 11 (2 cavities, 0= 20 °, f)= 8 °)
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Figure 5.2.4 Performance Data for Configuration 22 (31 cavities, 0=20 °, 5= 8 °)
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Figure 5.2.5 ESP Pressure Contour for NPR=2.0, Configuration 6 (0=30 °, dS=8°)
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Figure 5.2.6 PSP Pressure Contour for NPR=2.0, Configuration 6 (0=30 °, i5= 8°)
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Figure 5.2.7 ESP Pressure Contour for NPR=8.8, Configuration 6 (0=30 °, _ 8 °)
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Figure 5.2.8 PSP Pressure Contour for NPR=8.8, Configuration 6 (0=30° 8 °)
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Figure 5.2.9 ESP Pressure Contour for NPR=8.8, Configuration 13

(2 cavities, 0=20 °, i_- 8 °)
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Figure 5.2.10 PSP Pressure Contour for NPR=8.8, Configuration 13
(2 cavities, 0=20 °, _i= 8°)
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NPR= 8.8

a) Configuration5 (0=30°, _- 4°)

F low

NPR = 3.0

d) Configuration 6 (0=30 <>,_-- 8 °)

NPR = 3.5

b) Configuration 8 (0=45 °, i5= 8°) e) Configuration 6 (0=30 °, _= 8 °)

c) Configuration 9 (0= cubic spline, 8= 8 °)

Figure 5.2.11 PSP Pressure Contour for Various NPRs and Configurations

72



F loW

Figure 5.2.12 Focusing Schlieren of Configuration 1 Installed on Lower Ramp,

NPR = 2.0 (0 = 15 °, _ = 4 °)

F low

Figure 5.2.13 Focusing Schlieren of Configuration 6 Installed on Lower Ramp,

NPR = 2.0 (0 = 30 °, _ = 8°)
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Fbw

Figure 5.2.14 Focusing Schlieren of Configuration 6 Installed on Lower Ramp,

NPR = 8.8 (0 = 20 °, _5= 8 °)

Flow

Figure 5.2.15 Focusing Schlieren of Configuration 6 Installed on Both the Upper

and Lower Surfaces, NPR = 8.8 (0 = 20 °, _i = 8 °)
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Flow

Figure 5.2.16 Focusing Schlieren of Configuration 22 Installed on Lower Surface,

NPR = 8.8 (31 cavities, 0 = 20 °, _i = 8 °)
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Figure5.2.17 LaserLight SheetPictureShowingtheDevelopmentof Streamwise
Vorticesfor Configuration6,NPR- 8.8(0 = 30°, 8 = 8 °)

Figure 5.2.18 Laser Light Sheet Picture Showing the Interaction of Four Vortices

for Configuration 13, NPR = 8.8 (2 cavities, 0 = 20 °, 8 = 8 °)
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Flow

• ;|'

Figure 5.2.19 Water Tunnel Dye Injection Showing the Development of Vortices

for Configuration 5 (0=30 °, 5= 4 °)
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Figure5.2.20LaserLight SheetVisualizationof VorticiesDevelopedinWater
Tunnel,Configuration5 (0 = 20°, _i= 8°)

Figure5.2.21LaserLight SheetPictureof theStreamwiseDevelopmentof Vortex
for Configuration5 in theWaterTunnel(-0= 30°, _ = 4°)
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Figure 5.2.22 Laser Light ' Sheet of Streamwise Developement of the Shear Layer
Produced by Installing the Cavity Backwards in Water Tunnel Flow

Figure 5.2.23 Laser Light Sheet of Crossflow Development of the Shear Layer
Produced by Installing the Cavity Backwards in Water Tunnel Flow
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6.0 CONCLUSIONS AND RECOMMENDATIONS

Extensive testing was performed on a supersonic vortex generator at the University of Kansas

and at NASA Langley Research Center. The shaped cavity generated a pair of counter-rotating

streamwise vortices with little additional losses.

_.1 .C.oalr.lllR_

The results from experiments at the University of Kansas clearly showed that the shaped

cavity placed in supersonic flow would generate streamwise vortices. Additional tests at NASA

Langley proved that these vortices can be produced with little additional loss.

Based on the performance data, the losses associated with the use of this type of shaped

cavity at design NPR were small, within the accuracy of the instrumentation used. This would

seem to indicate that the vortices were being generated with weak compression and expansion

Mach waves. At lower NPR, the losses are greater, due in part to the vortices delaying

separation, thereby allowing for greater expansion of the supersonic flow.

Pressure sensitive paint experiments verified the path of the vortex and allowed for some

investigation of vortex interactions. The PSP results also showed the effects of the cavity on the

shock structure of an underexpanded nozzle. With the presence of the VG, the flow is allowed

to expand further downstream, to pressures further below atmospheric. This expansion delays

the shock induced separation. This in turn causes a decrease in the performance because the

pressure is reduced on the forward-facing step. However, there are instances where separation

control is advantageous, for example on a wing that is about to stall at supersonic conditions or

in C-D nozzles for thrust vectoring applications.

The use of pressure sensitive paint in a relatively high pressure environment has been

validated. When the PSP pressures were compared to ESP data, the results agreed within,

approximately, 3.5% for all NPRs. Since the PSP data provided a much clearer picture of the

overall flow field than did the pressure taps.

The flat plate CFD results listed above were originally believed to be accurate, converged

representations of the physical flow, however, after the inability of the expanding flow solver to
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convergeto a physical solution, the results obtained for the flat plate are thrown into doubt. The

following conclusions can be made about the attempts to obtain a numerical solution to the

supersonic flow through a shaped cavity.

* The use of the AXB grid generator, while originally considered acceptable, may not be

adequate for providing a grid that can accurately capture the path of the vortices.

* The PAB3D code provided great flexibility in solution methods. This code has been used

to solve similar nozzle problems in the past and, with the support of NASA Langley

engineers, should be able to solve the SSVG problem.

* The flat plate solutions did converge. However, due to errors in the nozzle solution, these

results are not considered valid without verification using a code and grid generator that

can accurately solve the expanding flow problem.

6.2 Recommendations

While the experiments documented in this report represent a considerable amount of

information, there are several areas that require further investigation.

Detailed flow field analysis of the cavity should be performed. Computational fluid dynamics

techniques should be used to verify the experimental data. When adequate CFD validation has

been performed, greater design flexibility will be possible. Since the CFD results can be

validated using the experimental data detailed here, the CFD code could then be used as a design

tool, tailoring cavity shapes to specific flow fields without the need for extensive experimental

testing.

The design and testing of a smart version of the vortex generator is another area of future

research. While the investigation performed here indicates that flow separation can be delayed

by the presence of a cavity in the flow, the ability to reattach separated flow should be

investigated. In order to perform this type of testing a nozzle with variable geometry and a smart

version of the VG must be developed.

Since the primary focus of this investigation was on nozzle flow, additional investigations in

other types of flow fields such as SCRAMjet flow, turbomachinery blading and exterior

supersonic flow.
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Theuseof theAXB grid generatorandthePAB3Dflow solverwereusedto attemptto solve

thecomplexflow patternscreatedbyacavityvortexgeneratorin supersonicflow. Unfortunately,

the grid wasnot adequatefor providingconvergedsolutions. The following recommendations

aresuggestedfor correctingtheproblemsdiscovered.

* Thegrid matchingbetweentheexistingblocksmustbesmoothedout further. Themeans

to do this areprovidedin reference4 andinvolve changingparametersin the ssvg.dsg

file, acopy of which may be found in appendixC.

* Theboundarylayerexpansionfor theboundarylayersatthecavity edgeandtheboundary

layersusedto capturethe vortex must bemodified. In all cases,the grid expandstoo

fast. A combinationof additionalgrid points, more grid points located within the

boundarylayer anda thicker boundarylayer mustbeemployed.

* The locationof the boundarylayersusedto capturethe vortexpath mustbe revisedto

ensurethatthetruevortexpath,determinedfrom experiments,is capturedin theboundary

layers.

* Considertheuseof othergrid generatingschemes.Specifically,theuseof adaptivegrids.

Theuseof adaptivegridsmightprovideaneasiermethodof vortexcapture.ThePAB3D

codecould bemodified to allow the useof sucha grid generator.

* Modify the inflow grid blocks. The originalgrid designdid not allow adequatetime for

the upstreamflow to developfully. The suggestedblock modificationsare shownin

figure 5.3.5.
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APPENDIX A University of Kansas Flow Visualization Pictures

This Appendix tabulates additional flow visualization pictures taken at the University of

Kansas as a proof-of-concept investigation of the effects of a shaped cavity in supersonic flow.

A1



Flow

Figure A.1 Surface Flow Visualization Using Dye Injection, Configuration B,

Indented Walls (0= 20 °, 5= 15 °)

F low

Figure A.2 Surface Flow Visualization with Dye Injection, Configuration C,

Straight Walls (0= 20 °, _i= 15 °)
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FigureA.3

F low

_..;_:'L"._? "b_. ' : _''

f

O"

!;

Surface Flow Visualization with Dye Injected from

Configuration D, Shallow Ramp (0= 20 °, 5= 8 °)

Lower Ports,

F loW

Figure A.4 Surface Flow Visualization with Dye Injected from Lower Ports,

Configuration E, Flat Vertex (0= 20 °, fi= 15 °)
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APPENDIX B NASA Langley Experimental Results

This Appendix tabulates additional configuration photographs and experimental pictures

used in the investigation of the effects of a supersonic vortex generator on divergent nozzle flow.
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Figure B. 1 Photograph of Configuration 9 (O = cubic spline, 5 = 8 °)

Figure B.2 Photograph of Configuration 13 (2 cavities, 0 - 20 °, 5 - 8 °)
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3.0- 10.0

Configuration 12

Configuration 13

Figure B.3 PSP Pictures for Various NPRs and Configurations

B3
I



F low

Figure B.4 Focusing Schlieren Photograph of a Shallow Ramp Configuration,

Configuration 5, NPR = 8.8 (0 = 30 °, 8 = 4 °)

Fk_W

Figure B.5 Focusing Schlieren Photograph of a Supersonic Cavity Lip,

Configuration 8, NPR = 8.8 (0 = 45 °, 8 = 8")
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Flow

Figure B.6 Focusing Schlieren Photograph of a Cubic Spline Cavity Shape,

Configuration 9, NPR = 8.8 (0 = cubic spline, _ = 8")

F low

Figure B.7 Focusing Schlieren Photograph of a Underexpanded Nozzle,

Configuration 6, NPR = 10.0 (0 = 30 °, _i= 8 °)
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FigureB.8 LaserSheetFlow Visualizationof aCubicSplineShapedCavity,
Configuration9, NPR= 8.8(0 = cubicspline,_i= 8°)

Figure B.9 Laser Sheet Flow Visualization of Vortex Interaction, Configuration 13,

NPR = 8.8 (2 cavities, 0 = 20 °, _i= 8 °)
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Flow

Figure B. 10 Water Tunnel Flow Visualization Showing Cavity Interior and Vortex

Core, Configuration 5 (0=30 °, _- 4 °)

Figure B.11 Water Tunnel Laser Sheet Showing Vortex Development 2 Inches

Upstream of the Cavity Base, Configuration 6 (0=30 °, _- 8")
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APPENDIX C. Sampleinput files for AXB

This appendix tabulates the input files used in the AXB grid generation program used to

investigate vortex flow in a supersonic cavity.
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SSVG.IN:

*> main input file for "axmesh" package: patche_ mbl, (iO&)

4

33 149 33 1 49 33 141 49 1 49

*> file names: given edges coords; make-edge instructions:

ssvg.dat

ssvg.dsg

*> key dimensons: kset (kbdlr(k),yplus(k),thk(k), k=l,kseO

4

20 .01 0.0001

12 .005 0.00005

12 .I0 0.00250

16 .005 0.00005

*> g2mrdn normal control factor and smoothing cycle: fcto,ismg2

.60 36

*> (k,i)-patch instructions: k,ityp,irul,ibvz:

1 1 1 0

2 1 1 0

3 1 1 0

4 1 1 0

*> start of 3-dim grid and control f'fle: scheme

time dependent

*> zone/block indices

1

4

C2



*> make volume blocks: number of blocks and dimensions

4

33 73 49

33 121 49

33 49 41

49 121 49

*> grid type flag: igr =1: axisymmetric; igr =2: rectangular

2

*> fac 5,6 j-distr rules: kset,(k,nt,nbl,nb2,bg,end,sl,s2,dsl,ds2)

18

1 37 1 1 -2.0 0.0

2 37 1 1 0.0 2.0

3 37 1 20 -2.0 0.0

4 37 20 1 0.0 2.0

0.04 0.01 0.04 0.01

0.01 0.04 0.01 0.04

0.04 0.05 0.04 0.0005

0.05 0.04 0.0005 0.04

5 49 1 1 -0.002 0.002 O. O. O. O.

6 37 1 20 -2.0 -0.577 0.04 0.02 0.04 0.0002

7 49 16 16 -0.577 0.577 0.04 0.04 0.0004 0.0004

8 37 20 1 0.577 2.0 0.02 0.04 0.0002 0.04

9 37 1 20 -2.0 -0.577 0.04 0.02 0.04 0.0002

10 49 12 12 -0.577 0.577 0.04 0.04 0.0005 0.0005

11 37 20 1 0.577 2.0 0.02 0.04 0.0005 0.04

12 49 1 1 -0.1 0.1 O. O. O. O.

13 37 1 20 -2.0 -0.002 0.04 0.05 0.04 0.0005

14 37 20 1 0.002 2.0

15 37 1 20 -2.0 -0.1

16 37 20 1 0.1 2.0

17 37 1 20 -2.0 0.0

18 37 20 1 0.0 2.0

0.05 0.04 0.0005 0.04

0.04 0.05 0.04 0.0005

0.05 0.04 0.0005 0.04

0.04 0.10 0.04 0.005

0.10 0.04 0.005 0.04
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*> makevolume blocks: face 1,2; four 5,6 edges; destination addr.

9

1 1 1 113 17 000000

21 1 224 18 000000

3 2 2 13156 6 0 0 00 00

4 2 2 14168 8 0 0 0 0 0 0

54 4 6699 000000

6 4 4 881111 0 0 0 0 0 0

73 3 5577 000000

8 2 2 5127 7 0 0 0 0 0 0

9 4 4 771010 0 0 0 0 0 0

1 1 33 1 37 0 0

1 1 33 37 73 0 0

2 1 33 1 37 0 0

2 1 33 85121 0 0

4 1 49 1 37 0 0

4 1 49 85121 0 0

3 133 0 00 0

2 1 33 37 85 0 0

4 1 49 37 85 0 0

*> boundary conditions for all blocks (ijswap status: 5,6,1,2,3,4)

4

-1 2 -1 -1 0 -1

1 4 -1 -1 0 -1

0 -6 0 0 0 2

2 -6 -1 -1 0 -1
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SSVG.DSG

*> box specifications for Supersonic Vortex Generator (8 deg)

*> control points: nctrlp =

10

*> no.,type,rule,tag 1,cntmp(1),cntmp(2),cntmp(3):

1 0 0 0 0.0 0.0 -0.25

2 0 0 0 0.0 0.5 -0.25

3 0 0 0 0.0 -0.14 0.0

4 0 0 0 0.0 0.0 0.0

5 0 0 0 0.0 0.602 0.0

6 0 0 0 0.0 -1.e-4 1.0

7 0 0 0 0.0 0.0 1.0

8 0 0 0 0.0 1.010 1.0

9 0 0 0 0.0 0.0 2.16

10 0 0 0 0.0 1.3815 2.16

*> edge specifications for each box: number of boxes

4

*> inflow

1 1 1

[1]

1

*> segment specifications: nc 1,nc2,type,tag,rule(4),dstrb(4)

1 2 2 -7 0 0 -1 1 0.0 -1.2 0.0

4 5 2 -7 0 0 -1 1 0.0 -1.2 0.0

1 4 2 -7 0 0 1-3 -2.0 0.0 0.0

2 5 2 -7 0 0 1 -3 -2.0 0.0 0.0

*> wedgeide [2]

1 1 1 1

0.0

0.0

0.0

0.0
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*> segmentspecifications:nc1,nc2,type,tag,rule(4),dstrb(4)

4 5 -1 -7 0 0 -1 1 0.0 -1.2 0.0 0.0

7 8 2 -7 0 0 -1 1 0.0 -1.2 0.0 0.0

4 7 2 -7 0 0 1 1 -0.8 -1.05 0.0 0.0

5 8 2 -7 0 0 1 1 -0.8 -1.05 0.0 0.0

*> depression[3]

1 1 1 1

*> segmentspecifications:ncl,nc2,type,tag,rule(4),dstrb(4)

3 4 2 -7 0 0 -4 -2 0.0 0.0 0.0 0.0

6 7 2 -7 0 0 1 1 0.0 0.0 0.0 0.0

3 6 2 -7 0 0 1 1 -0.8 -1.05 0.0 0.0

4 7 -1 -7 0 0 1 1 -0.8 -1.05 0.0 0.0

*> downstream [4]

1 1 1 1

*> segment specifications: ncl,nc2,type,tag,rule(4),dstrb(4)

7 8 -1 -7 0 0 -1 1 0.0 -1.2 0.0 0.0

9 10 2 -7 0 0 -1 1 0.0 -1.2 0.0 0.0

7 9 2 -7 0 0 -3 1 0.0 -2.0 0.0 0.0

8 10 2 -7 0 0 -3 1 0.0 -2.0 0.0 0.0
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SSVG.DAT

*> givencenterline,nozzleinterior, nozzleexterior

0
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APPENDIX D. Sample control files for PAB3D.V12

This appendix tabulates the input and control files used by the PAB3D.V12 flow

solver program used to simulate vortex flow in a supersonic cavity.
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SURF.CONT

icut iface iprt ib izn u v w Pres. Temp.

1 3 1 10 1 0.0 0.0 0.0 10. 294.4
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KE.CONT

ipt ib izn ilhg iord rku

1 2 1 -4 1 .01

I 2 1 -4 1 .01

1 3 1 -4 1 .01

1 4 1 -4 1 .01

vmax dtf itk icomp comp kelimt ikn

200000. 2. 1 5

200000. 2. 1 5

200000. 2. 1 5

200000. 2. 1 5

1. 1.e-4 10. 0 0

1. 1.e-4 10. 0 0

1. 1.e-4 10. 0 0

1. 1.e-4 10. 0 0
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SSVG8.CONT

--grid file name--

fgrid.dat

--restart file name--

restart.d

--init file name--

init8 .d

nte

0 0

nzone

1 4 2

ngit

10

nit

10"10

< time dep new Axb version>

perf.cont ke.cont

Total number of volume grid = 670516

nitz ********** zone 1 **********

1 1 1 1 1 1 1 1 1 1 1 1 1

idim iblock (jdm,kdm) ....... idm(m) ...

49 4 73 49 121 49 49 41 121 49 33 33 33 49

nitb .......... block 1.1 .......... block count= 1

10"1

nseq

10"444

ibs ibf

132 132 132 132 132 132 132 132 132 132

ivfluxj ivfluxr irstrt ivisc iorth

13230

I-SC LIMIT J-SC LIMIT K-SC LIMIT 1-BIAS

32 32 32 0
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Ncutpz(1,5)Ncutpz(1,6)

1 1

ibci jl j2 kl k2

-1 1 72 1 48

10025 1 72 1 48

Npart(1) kturb(1,1) kturb(1,2) ... ipt(1,1) ...

2 -1 6191 0

Ncutpb(1) Ncutpb(2) Ncutpb(3) Ncutpb(4)

1 1 1 1

ibcjk from to il i2

0 1 48 1 32

-6 1 48 1 32

0 1 72 1 32

-17 1 72 1 32

nitb .......... block 1.2 ..........

1 1 1 1 1 1 1 1 1 1 1 1

nseq

10"444

ibs ibf

132 132 132 132 132 132

ivfluxj ivfluxr irstrt ivisc iorth

13230

I-SC LIMIT J-SC LIMIT

32 32 32 0

Ncutpz( 1,5) Ncutpz( 1,6)

1 1

ibci jl j2 kl k2

10016 1 120 1 48

4 1 120 1 48

(faces 5,6)

igrid ike

(faces 1,2,3,4)

block count= 2

132 132 132 132

K-SC LIMIT IBIAS

(faces 5,6)
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Npart(1) kturb(1,1) kturb(1,2) ... ipt(1,1) ...

1 6 1 1 0

Ncutpb(1) Ncutpb(2) Ncutpb(3) Ncutpb(4)

1 1 3 1

ibcjk from to il i2

-6 1 48 1 32

0 1 48 1 32

0 1 36 1 32

3 37 84 1 32

0 85 120 1 32

-17 1 120 1 32

nitb .......... block 1.3 ..........

1 1 1 1 1 1 1 1 1 1 1 1 1

nseq

10"444

ibs ibf

132 132 132 132 132 132 132

ivfluxj ivfluxr irstrt ivisc iorth

13230

I-SC LIMIT J-SC LIMIT

32 32 32 0

Ncutpz(1,5) Ncutpz(1,6)

1 1

ibci j 1 j2 k 1 k2

0 1 48 1 40

-6 1 48 1 40

Npart(1) kturb( 1,1 ) kturb( 1,2) ...

1 6 1 1 0

Ncutpb(1) Ncutpb(2) Ncutpb(3) Ncutpb(4)

1 1 1 1

igrid ike

(faces 1,2,3,4)

block count= 3

1 32 1 32

K-SC LIMIT IBIAS

(faces 5,6)

ipt(1,1) ... igrid ike

1 32
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ibcjk from to il i2 (faces 1,2,3,4)

0 1 40 1 32

0 1 40 1 32

0 1 48 1 32

2 1 48 1 32

nitb .......... block 1.4 .......... block count= 4

1 1 1 1 1 1 1 1 1 1 1 1 1

nseq

10"444

ibs ibf

148 148 148 148 148 148 148 148 148 148

ivfluxj ivfluxr irstrt ivisc

13230

I-SC LIMIT J-SC LIMIT

32 32 32 0

Ncutpz(1,5) Ncutpz(1,6)

1 1

ibci jl j2 kl k2

2 1 120 1 48

-6 1 120 1 48

iorth

Npart(1) kturb( 1,1 ) kturb(1,2) ...

1 6 1 1 0

Ncutpb(1) Ncutpb(2) Ncutpb(3) Ncutpb(4)

1 1 1 1

ib_k _om to il i2

0 1 48 1 48

0 1 48 1 48

0 1 120 1 48

-17 1 120 1 48

K-SC LIMIT IBIAS

(faces 5,6)

ipt(1,1) ... igrid ike

(faces 1,2,3,4)
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3-D SUPERSONIC UNDEREXPANDED JET FLOW

RJ DT NIT N1TFO IFLAGTS FMAX NITGBL ISYM

0.0254 -0.5 1 0 -4 10.0 1 1

IGRID IRISIO INORM KG1 KG2 KG3 IPERF1 ISWEEP IMPVIS

4 -1 0 1 5 2 0 0 1

IPMF0 IPMAX IRSTRT ISTP NISTP IVAR IBC I2D ITRP

1 80 2 51 1 2 0 0 0

ITURB ISEL ICOMP IVORT ISTAT SIGL SIGU Gamma Ireg Regt

80 1 1 3 0 0.1 4.0 1.4 0 1

nprfile

0
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iunit nblock iswp

040

ncut jstart

1

1,73,1,49,1

1

1,121,1,49,1

1

1,49,1,41,1

1

1,121,1,49,1

nset iinit

11

pr temp mach

129.36 580.00 1.0

INITIAL.DAT

(Initial Conditionsfile)

alphaBetagam iin

0. 0. 1.40
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